numerical solution for boundary value problem of fractional order with approximate integral and derivative

Authors

abdol ali neamaty

department of mathematics, university of mazandaran, babolsar, iran bahram agheli

department of mathematics, university of mazandaran, babolsar, iran mohammad adabitabar

department of mathematics, qaemshahr branch, islamic azad university, qaemshahr, iran

abstract

approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. in this paper with central difference approximation and newton cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. three numerical examples are presented to describe the fractional usefulness of the suggested method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

full text

Positive Solution for Boundary Value Problem of Fractional Dierential Equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

full text

Positive solution for boundary value problem of fractional dierential equation

In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.

full text

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

full text

Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem

A two-point boundary value problem is considered on the interval [0, 1], where the leading term in the differential operator is a Riemann-Liouville fractional derivative of order 2 − δ with 0 < δ < 1. It is shown that any solution of such a problem can be expressed in terms of solutions to two associated weakly singular Volterra integral equations of the second kind. As a consequence, existence...

full text

Higher order multi-point fractional boundary value problems with integral boundary conditions

In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...

full text

My Resources

Save resource for easier access later


Journal title:
computational methods for differential equations

جلد ۲، شماره ۳، صفحات ۱۹۵-۲۰۴

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023